The high-energy radiation protectant extracellular sheath pigment scytonemin and its reduced counterpart in the cyanobacterium Scytonema sp. R77DM.

نویسندگان

  • Rajesh P Rastogi
  • Ravi R Sonani
  • Datta Madamwar
چکیده

A cyanobacterial extracellular sheath pigment from Scytonema sp. R77DM was partially characterized and investigated for its increased production under abiotic factors, and UV-screening function. HPLC with PDA detection, and ion trap liquid chromatography/mass spectrometry analysis revealed the presence of a pigment scytonemin and its reduced counterpart. Ultraviolet radiation showed more stimulative effects on scytonemin production. A significant synergistic enhancement of scytonemin synthesis was observed under combined stress of heat and UV radiation. Scytonemin also exhibited efficient UV-screening function by reducing the in vivo production of reactive oxygen species (ROS) and cyclobutane thymine dimer. UV-induced formation of ROS and thymine dimer was also reduced upon exposure of cyanobacterial cells to exogenous antioxidant, ascorbic acid; however, the effect was more significant when both scytonemin and ascorbic acid were applied in combination. Moreover, the results indicate the potential role of scytonemin pigment as natural photoprotectant against high energy solar insolation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New pigments from the terrestrial cyanobacterium Scytonema sp. collected on the Mitaraka inselberg, French Guyana.

Inselbergs are hills rising abruptly from the surrounding plains where cyanobacteria are the only living organisms under conditions of intense solar radiation. A survival mechanism to prevent UV-damage has been associated with synthesis of the ultraviolet-screening, photostable sheath pigment scytonemin. The organic extract of Scytonema sp., collected on the Mitaraka inselberg, French Guyana, y...

متن کامل

The cyanobacterial UV-absorbing pigment scytonemin displays radical-scavenging activity.

Scytonemin is a 544-Da hydrophobic pigment that can absorb UV-A radiation. It is present in cyanobacterial sheaths and is thought to function as a UV protectant. In this study, scytonemin was purified from the terrestrial cyanobacterium Nostoc commune, and its radical-scavenging activity was characterized. The purified scytonemin quenched an organic radical in vitro and accounted for up to 10% ...

متن کامل

Gene expression of a two-component regulatory system associated with sunscreen biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.

Long-wavelength ultraviolet radiation (UVA) can damage cells through photooxidative stress, leading to harmful photosensitized proteins and pigments in cyanobacteria. To mitigate damage, some cyanobacteria secrete the UVA-absorbing pigment scytonemin into their extracellular sheath. Comparative genomic analyses suggest that scytonemin biosynthesis is regulated by the two-component regulatory sy...

متن کامل

Aquatic Microalgae As Potential Sources Of Uv-Screening Compounds

Microalgae are a polyphyletic and biochemically diverse assemblage of chlorophyll a-containing microorganisms capable of oxygenic photosynthesis that are predominantly found in aquatic environments with observed high levels of ultraviolet (UV) radiation. Certain microalgae produce organic metabolites, such as sporopollenin, scytonemin and mycosporine-like amino acids, to protect themselves from...

متن کامل

The response regulator Npun_F1278 is essential for scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.

Following exposure to long-wavelength ultraviolet radiation (UVA), some cyanobacteria produce the indole-alkaloid sunscreen scytonemin. The genomic region associated with scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme includes 18 cotranscribed genes. A two-component regulatory system (Npun_F1277/Npun_F1278) directly upstream from the biosynthetic genes was identified through c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioresource technology

دوره 171  شماره 

صفحات  -

تاریخ انتشار 2014